第四节 碰撞
基础夯实
一、选择题(1~3题为单选题,4、5题为多选题)
1.关于散射,下列说法正确的是( C )
A.散射就是乱反射,毫无规律可言
B.散射中没有对心碰撞
C.散射时仍遵守动量守恒定律
D.散射时不遵守动量守恒定律
解析:由于散射也是碰撞,所以散射过程中动量守恒。
2.(2020·江苏省宿迁市高二下学期期末)斯诺克运动深受年轻人的喜爱,如图所示,选手将质量为m的A球以速度v与质量为m静止的B球发生弹性碰撞,碰撞后B球的速度为( A )
A.v B.2v
C.0.5v D.0.2v
解析:两球发生弹性碰撞,则碰撞过程系统动量守恒、机械能守恒,以A的初速度方向为正方向,由动量守恒定律得:mv=mvA+mvB,由机械能守恒定律得:mv2=mv+mv,解得:vA=0,vB=v;选项A正确。
3.在光滑水平面上有三个完全相同的小球,它们成一条直线,2、3小球静止并靠在一起,1球以速度v0 射向它们,如图所示,设碰撞中不损失机械能,则碰后三个小球的速度可能是( D )
A.v1=v2=v3=v0 B.v1=0,v2=v3=v0
C.v1=0,v2=v3=v0 D.v1=v2=0,v3=v0
解析:由题设条件,三个小球在碰撞过程中总动量和总动能守恒,若各球质量均为m,则碰撞前系统总动量为mv0,总动能应为mv。
假如选项A正确,则碰后总动量为mv0,这显然违反动量守恒定律,故不可能。
假如选项B正确,则碰后总动量为mv0,这也违反动量守恒定律,故也不可能。
假如选项C正确,则碰后总动量为mv0,但总动能为mv,这显然违反机械能守恒定律,故也不可能。
假如选项D正确的话,则通过计算其既满足动量守恒定律,也满足机械能守恒定律,故选项D正确。
4.在光滑水平面上,一质量为m、速度大小为v的A球与质量为2m静止的B球发生正碰,碰撞可能是弹性的,也可能是非弹性的,则碰后B球的速度大小可能是( BC )
A.0.7v B.0.6v
C.0.4v D.0.2v
解析:以两球组成的系统为研究对象,以A球的初速度方向为正方向,如果碰撞为弹性碰撞,由动量守恒定律得:mv=mvA+2mvB,
由机械能守恒定律得:mv2=mv+·2mv,
解得:vA=-v,vB=v,
负号表示碰撞后A球反向弹回。如果碰撞为完全非弹性碰撞,以A球的初速度方向为正方向,由动量守恒定律得:
mv=(m+2m)vB,解得:vB=v,
则碰撞后B球的速度范围是:v<vB<v,故B、C正确,A、D错误。