数学思想方法作为基础知识的重要组成部分,但又有别于基础知识。除基本的数学方法以外,其他思想方法都呈隐蔽形式,渗透在学习新知识和运用知识解决问题的过程之中。这就要求教师在教学过程中把握渗透的时机,选择适当的方法,使学生能够领悟并逐步学会运用这些思想方法去解决问题。
一、在知识的形成过程中渗透数学思想方法
数学知识的发生过程实际上也是数学思想方法的发生过程。任何一个概念,都经历着由感性到理性的抽象概括过程;任何一个规律,都经历着由特殊到一般的归纳过程。如果我们把这些认识过程返璞归真,在教师的引导下,让学生以探索者的姿态出现,去参与概念的形成和规律的揭示过程,学生获得的就不仅是数学概念、定理、法则,更重要的是发展了抽象概括的思维和归纳的思维,还可以养成良好的思维品质。因此,概念的形成过程、结论的推导过程、规律的被揭示过程都是渗透数学思想方法的极好机会和途径。
二、在解题探索过程中渗透数学思想方法
教学大纲明确指出:“要加强对解题的正确指导,引导学生从解题的思想方法上作必要的概括。”数学中的化归、数学模型、数形结合、类比、归纳猜想等思想方法,既是解题思路分析中必不可少的思想方法,又是具有思维导向型的思想方法。如,学生一旦形成了化归意识,就能化未知为已知、化繁为简、化一般为特殊,优化解题方法;数学思想方法在解题思路探索中的渗透,可以使学生的思维品质更具合理性、条理性和敏捷性
三、在问题的解决过程中渗透数学思想方法
问题解决,是以思考为内涵,以问题目标为定向的心理活动,是在新情景下通过思考去实现学习目标的活动,“思考活动”和“探索过程”是问题解决的内核。数学领域中的问题解决,与其他科学领域用数学去解决问题不同。数学领域里的问题解决,不仅关心问题的结果,而且关心求得结果的过程,即问题解决的整个思考过程。
四、在复习与小结中提炼、概括数学思想方法
小结与复习是数学教学的一个重要环节,揭示知识之间的内在联系以及归纳、提炼知识中蕴含的数学思想方法是小结与复习的功能之一。数学的小结与复习,不能仅停留在把已学的知识温习记忆一遍的要求上,而要去努力思考新知识是怎样产生、展开和证明的,其实质是什么?怎样应用它等。小结与复习是对知识进行深化、精炼和概括的过程,它需要通过手和脑积极主动地开展活动才能达到。因此,在这个过程中,提供了发展和提高能力的极好机会,也是渗透数学思想方法的极好机会与途径。
五、引导学生进行反思,从中领悟数学思想方法
著名数学教育家弗赖登塔尔指出:“反思是数学思维活动的核心和动力。”因此,教师应该创设各种情境,为学生创造反思的机会,引导学生积极主动地提出问题,总结经验。如:解法是怎样想出来的?关键是那一步?自己为什么没想出来?能找到更好的解题途径吗?这个方法能推广吗?通过解这个题,我学到了什么?在必要时可以引导学生进行讨论。这种反思能较好地概括思维的本质,从而上升到数学思想方法上来。同时由于学习的不可代替原则,教师在积极引导学生进行反思的同时还要善于引导学生学会自己提炼数学思想方法,帮助学生领悟数学知识与解题过程中隐藏的数学思想方法。