1.已知平面α,β满足α⊥β,α∩β=l,过平面α和β外的一点P作直线m⊥l,则“m∥α”是“m⊥β”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
C 解析:当m∥α时,过m作平面γ∩α=n,则m∥n,结合α⊥β,得n⊥β,从而m⊥β;当m⊥β时,在α内作直线n⊥l,结合α⊥β,得n⊥β,所以m∥n.又m⊄α,n⊂α,所以m∥α.故选C.
2.(2021·石家庄模拟)如图,PA垂直于矩形ABCD所在的平面,则图中与平面PCD垂直的平面是( )
A.平面ABCD B.平面PBC
C.平面PAD D.平面PAB
C 解析:因为PA⊥平面ABCD,所以PA⊥CD.因为四边形ABCD为矩形,所以CD⊥AD,所以CD⊥平面PAD,所以平面PCD⊥平面PAD.
3.已知长方体ABCDA1B1C1D1中,AA1=,AB=4.若在棱AB上存在点P,使得D1P⊥PC,则AD的取值范围是( )
A.(0,1] B.(0,2]
C.(1,] D.[1,4)
B 解析:连接DP(图略),由D1P⊥PC,DD1⊥PC,且D1P,DD1是平面DD1P内两条相交直线,得PC⊥平面DD1P,PC⊥DP,即点P在以CD为直径的圆上,又点P在AB上,则AB与圆有公共点,即0<AD≤CD=2.故选B.
4.已知三棱柱ABCA1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形.若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )
A. B.
C. D.