3.向量共线定理
向量a(a≠0)与b共线的充要条件是:存在唯一一个实数λ,使得b=λa.
常用结论
1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即+++…+=,特别地,一个封闭图形,首尾连接而成的向量和为零向量.
2.若F为线段AB的中点,O为平面内任意一点,则=(+).
3.若A,B,C是平面内不共线的三点,则++=0⇔P为△ABC的重心,=(+).
4.若=λ+μ(λ,μ为常数),则A,B,C三点共线的充要条件是λ+μ=1.
5.对于任意两个向量a,b,都有||a|-|b||≤|a±b|≤|a|+|b|.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)|a|与|b|是否相等,与a,b的方向无关.( √ )
(2)若向量a与b同向,且|a|>|b|,则a>b.( × )
(3)若向量与向量是共线向量,则A,B,C,D四点在一条直线上.( × )
(4)起点不同,但方向相同且模相等的向量是相等向量.( √ )
教材改编题
1.(多选)下列命题中,正确的是( )
A.若a与b都是单位向量,则a=b
B.直角坐标平面上的x轴、y轴都是向量
C.若用有向线段表示的向量与不相等,则点M与N不重合
D.海拔、温度、角度都不是向量
答案 CD