1.离散型随机变量
一般地,对于随机试验样本空间Ω中的每个样本点ω,都有唯一的实数X(ω)与之对应,我们称X为随机变量;可能取值为有限个或可以一一列举的随机变量称为离散型随机变量.
2.离散型随机变量的分布列
一般地,设离散型随机变量X的可能取值为x1,x2,…,xn,称X取每一个值xi的概率P(X=xi)=pi,i=1,2,…,n为X的概率分布列,简称分布列.
3.离散型随机变量的分布列的性质
①pi≥0(i=1,2,…,n);
②p1+p2+…+pn=1.
4.离散型随机变量的均值与方差
一般地,若离散型随机变量X的分布列为
X
|
x1
|
x2
|
…
|
xn
|
P
|
p1
|
p2
|
…
|
pn
|
(1)均值
则称E(X)=x1p1+x2p2+…+xnpn=ipi为随机变量X的均值或数学期望,数学期望简称期望.它反映了离散型随机变量取值的平均水平.