题型一 函数的单调性与奇偶性
例1 (1)(2020·新高考全国Ⅰ)若定义在R上的奇函数f(x)在(-∞,0)上单调递减,且f(2)=0,则满足xf(x-1)≥0的x的取值范围是( )
A.[-1,1]∪[3,+∞)
B.[-3,-1]∪[0,1]
C.[-1,0]∪[1,+∞)
D.[-1,0]∪[1,3]
答案 D
解析 因为函数f(x)为定义在R上的奇函数,
则f(0)=0.
又f(x)在(-∞,0)上单调递减,且f(2)=0,
画出函数f(x)的大致图象如图(1)所示,
则函数f(x-1)的大致图象如图(2)所示.
(1) (2)
当x≤0时,要满足xf(x-1)≥0,
则f(x-1)≤0,得-1≤x≤0.
当x>0时,要满足xf(x-1)≥0,
则f(x-1)≥0,得1≤x≤3.
故满足xf(x-1)≥0的x的取值范围是[-1,0]∪[1,3].