§6 垂直关系
6.1 垂直关系的判定
知识点一 直线与平面垂直的定义
[填一填]
如果直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫作平面α的垂线,平面α叫作直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫作垂足.
[答一答]
1.如果直线l与平面α内的无数条直线垂直,l与α垂直吗?
提示:不一定.若平面内的无数条直线是平行的,则直线l与平面可能平行,也可能垂直,也可能是相交但不垂直,也可能直线l在平面内.
2.“任何直线”“所有直线”“无数条直线”表达的是同一意思吗?
提示:“任何直线”与“所有直线”的意义相同,但与“无数条直线”不同,“无数条直线”仅是“任何直线”中的一部分.
3.若l⊥α,a为平面α内的任一条直线,则l与a是否垂直?
提示:垂直,由直线和平面垂直的定义可知,直线和平面内的所有直线都垂直,这也是证明两条直线垂直的一种方法.
知识点二 直线与平面垂直的判定定理
[填一填]
1.文字语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.
2.图形语言:如下图所示.
3.符号语言:aα,bα,a∩b=P,l⊥a,l⊥b⇒l⊥α.
[答一答]
4.如果一条直线和平面内的两条直线垂直,那么这条直线和这个平面垂直吗?为什么?
提示:无法判断这条直线和这个平面是否垂直.因为当这两条直线相交时,由判定定理可知直线和平面垂直;而当这两条直线相互平行时,直线和平面不一定垂直,直线可能在平面内,也可能与平面平行,还可能与平面斜交.
5.直线与平面垂直的判定定理的作用是什么?
提示:直线与平面垂直的判定定理是证明线面垂直的依据,体现了相互转化的数学思想,在应用时,应该注意定理条件的完备性.
知识点三 二面角及其平面角
[填一填]
二面角
(1)定义:一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫作半平面.从一条直线出发的两个半平面所组成的图形叫作二面角,这条直线叫作二面角的棱,这两个半平面叫作二面角的面.
(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作这个二面角的平面角,其范围是[0,π].二面角的大小用它的平面角来度量,平面角的度数就是二面角的度数.平面角是直角的二面角叫作直二面角.