用户名: 密码:  用户登录   新用户注册  忘记密码  账号激活
您的位置:教学资源网 >> 学案 >> 数学学案
高中数学编辑
2020_2021学年高中数学第一章立体几何初步1.6.1.2平面与平面垂直的判定课时作业含解析北师大版必修2
下载扣金币方式下载扣金币方式
需消耗1金币 立即下载
1个贡献点 立即下载
1个黄金点 立即下载
VIP下载通道>>>
提示:本自然月内重复下载不再扣除金币
  • 资源类别学案
    资源子类同步学案
  • 教材版本北师大版(现行教材)
    所属学科高中数学
  • 适用年级高一年级
    适用地区全国通用
  • 文件大小1133 K
    上传用户goldfisher
  • 更新时间2021/1/22 11:30:08
    下载统计今日0 总计1
  • 评论(0)发表评论  报错(0)我要报错  收藏
0
0
资源简介
课时作业9 平面与平面垂直的判定
|基础巩固|(25分钟,60)
一、选择题(每小题525)
1在空间四边形ABCDABBCADCDE为对角线AC的中点下列判断正确的是(  )
A平面ABD平面BDC
B平面ABC平面ABD
C平面ABC平面ADC
D平面ABC平面BED
解析:由已知条件得ACDEACBE,于是有AC平面BED,又AC平面ABC,所以有平面ABC平面BED成立.
答案:D
2如果一条直线垂直于一个平面内的下列各种情况能保证该直线与平面垂直的是________
三角形的两边
梯形的两边
圆的两条直径
正六边形的两条边
A①③ B
C②④ D①②③
解析:由线面垂直的判定定理可知①③是正确的,而中线面可能平行、相交,也可能直线在平面内.中由于正六边形的两边不一定相交,所以也无法判定线面垂直,故选A.
答案:A
3.
如图所示在三棱锥PABCPA平面ABCBAC90°则二面角BPAC的大小为(  )
A90°
B60°
C45°
D30°
解析:PA平面ABCBACA平面ABC
BAPACAPA,因此,BAC即为二面角BPAC的平面角.又BAC90°,故选A.
答案:A
4(2017·马鞍山四校联考)对于直线mn和平面αβγ有如下四个命题:
mαnmnαmαnmnααβγβαγmαmβαβ.
其中正确命题的个数是(  )
A1 B2
C3 D4
解析:nα位置关系不确定;n可能在α内;αγ位置关系不确定;由面面垂直的判定定理可知正确.故选A.
答案:A
5如图长方体中ABAD2CC1则二面角C1BDC的大小为(  )
A30° B45°
C60° D90°
解析:BD的中点O,连接COC1O.ABAD2,得COBD,且COBD.
C1BC1D,所以C1OBD
C1OC是二面角C1BDC的平面角.
RtC1CO中,OCCC1
tanC1OC,所以C1OC30°.故选A.
答案:A
  • 暂时没有相关评论

请先登录网站关闭

  忘记密码  新用户注册