课时作业7 平行关系的性质
|基础巩固|(25分钟,60分)
一、选择题(每小题5分,共25分)
1.
如图所示,长方体ABCD-A1B1C1D1中,E、F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于G、H,则HG与AB的位置关系是( )
A.平行
B.相交
C.异面
D.平行和异面
解析:∵E、F分别是AA1、BB1的中点,∴EF∥AB.又AB⊄平面EFGH,EF⊂平面EFGH,∴AB∥平面EFGH.又AB⊂平面ABCD,平面ABCD∩平面EFGH=GH,
∴AB∥GH.
答案:A
2.已知a,b表示两条不同的直线,α,β表示两个不重合的平面,给出下列四个命题:
①若α∥β,a⊂α,b⊂β,则a∥b;②若a∥b,a∥α,b∥β,则α∥β;③若α∥β,a⊂α,则a∥β;④若a∥α,a∥β,则α∥β.
其中正确的个数为 ( )
A.1 B.2
C.3 D.4
解析:对于①,a∥b或a与b是异面直线,故①错;对于②,也可能是α与β相交,故②错;对于④,同样α与β也可能相交,故④错.只有③对.
答案:A
3.在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,当BD∥平面EFGH时,下列结论正确的是( )
A.E,F,G,H一定是各边的中点
B.G,H一定是CD,DA的中点
C.BE:EA=BF:FC,且DH:HA=DG:GC
D.AE:EB=AH:HD,且BF:FC=DG:GC
解析:由BD∥平面EFGH,得BD∥EH,BD∥FG,则AE:EB=AH:HD,且BF:FC=DG:GC.
答案:D
4.若平面α∥平面β,直线a∥平面α,点B在平面β内,则在平面β内且过点B的所有直线中( )
A.不一定存在与a平行的直线
B.只有两条与a平行的直线
C.存在无数条与a平行的直线
D.存在唯一与a平行的直线
解析:当直线a平面β,且点B在直线a上时,在平面β内且过点B的所有直线中不存在与a平行的直线.故选A.
答案:A
5.若α∥β,A∈α,C∈α,B∈β,D∈β,且AB+CD=28,AB、CD在β内的射影长分别为9和5,则AB、CD的长分别为( )
A.16和12 B.15和13
C.17和11 D.18和10
解析:如图,作AM⊥β,CN⊥β,垂足分别为M、N,设AB=x,则CD=28-x,BM=9,ND=5,
∴x2-81=(28-x)2-25,
∴x=15,28-x=13.
答案:B