课时作业5 公理4及定理
|基础巩固|(25分钟,60分)
一、选择题(每小题5分,共25分)
1.若直线a∥b,b∩c=A,则a与c的位置关系是( )
A.异面 B.相交
C.平行 D.异面或相交
解析:a与c不可能平行,否则由a∥b,得b∥c与b∩c=A矛盾.故选D.
答案:D
2.若∠AOB=∠A1O1B1,且OA∥O1A1,OA与O1A1方向相同,则下列结论正确的是( )
A.OB∥O1B1且方向相同
B.OB∥O1B1,方向可能不同
C.OB与O1B1不平行
D.OB与O1B1不一定平行
解析:在空间中两角相等,角的两边不一定平行,即定理的逆命题不一定成立.故选D.
答案:D
3.(2017·安徽宿州十三校联考)在正方体ABCD-A1B1C1D1的所有面对角线中,与AB1成异面直线且与AB1成60°的有( )
A.1条 B.2条
C.3条 D.4条
解析:
如图,△AB1C是等边三角形,所以每个内角都为60°,所以面对角线中,所有与B1C平行或与AC平行的直线都与AB1成60°角.所以异面的有2条.
又△AB1D1也是等边三角形,同理满足条件的又有2条,共4条,选D.
答案:D
4.如图,在四面体S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是( )
A.相交 B.平行
C.异面 D.以上都有可能
解析:连接SG1,SG2并延长,分别与AB,AC交于点M,N,连接MN,则M,N分别为AB,AC的中点,由重心的性质,知=,∴G1G2∥MN.又M,N分别为AB,AC的中点,∴MN∥BC,再由平行公理可得G1G2∥BC,故选B.
答案:B
5.如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E,F分别是棱AB,BB1的中点,则直线EF和BC1所成的角是( )
A.45° B.60°
C.90° D.120°
解析:连接AB1,易知AB1∥EF,连接B1C,B1C与BC1交于点G,取AC的中点H,连接GH,则GH∥AB1∥EF.设AB=BC=AA1=a,连接HB,在三角形GHB中,易知GH=HB=GB=a,故所求的两直线所成的角即为∠HGB=60°.