性质1 a>b⇔__b<a__;(对称性)
性质2 a>b,b>c⇒__a>c__;(传递性)
性质3 a>b⇒__a+c>b+c__;(同加保序性)
推论:a+b>c⇒__a>c-b__;(移项法则)
性质4 a>b,c>0⇒__ac>bc__,(乘正保序性)a>b,c<0⇒ac<bc;(乘负反序性)
性质5 a>b,c>d⇒__a+c>b+d__;(同向相加保序性)
性质6 a>b>0,c>d>0⇒__ac>bd__;(正数同向相乘保序性)
性质7 a>b>0⇒__an>bn__(n∈N,n≥2).(非负乘方保序性)
思考:(1)性质3的推论实际就是解不等式中的什么法则?
(2)性质4就是在不等式的两边同乘以一个不为零的数,不改变不等号的方向,对吗?为什么?
(3)使用性质6,7时,要注意什么条件?
提示:(1)移项法则.