1.复合函数的单调性
函数y=f(u),u=φ(x),在函数y=f[φ(x)]的定义域上,如果y=f(u),u=φ(x)的单调性相同,则y=f[φ(x)]单调递增;如果y=f(u),u=φ(x)的单调性相反,则y=f[φ(x)]单调递减.
2.单调性定义的等价形式
设任意x1,x2∈[a,b],x1≠x2.
(1)若有(x1-x2)[f(x1)-f(x2)]>0或>0,则f(x)在闭区间[a,b]上是增函数.
(2)若有(x1-x2)[f(x1)-f(x2)]<0或<0,则f(x)在闭区间[a,b]上是减函数.
3.函数单调性的常用结论
(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数.
(2)若k>0,则kf(x)与f(x)单调性相同,若k<0,则kf(x)与f(x)单