知识梳理
知识点一 曲线与方程的定义
一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:
那么,这个方程叫做__曲线__的方程;这条曲线叫做__方程__的曲线.
知识点二 求动点的轨迹方程的基本步骤
重要结论
1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.
2.求轨迹问题常用的数学思想
(1)函数与方程思想:求平面曲线的轨迹方程就是将几何条件(性质)表示为动点坐标x,y的方程及函数关系.
(2)数形结合思想:由曲线的几何性质求曲线方程是“数”与“形”的有机结合.
(3)等价转化思想:通过坐标系使“数”与“形”相互结合,在解决问题时又需要相互转化.
双基自测