1.等比数列{an}的前n项和为Sn=a·3n-1+b,则=( )
A.-3B.-1C.1D.3
[解析]∵Sn=a·3n-1+b, ∴a1=S1=a+b,n≥2时,an=Sn-Sn-1=2a·3n-2,因为数列是等比数列,∴a+b=2a×,即b=-a,=-3.
[答案]A
2.(多选)等差数列{an}的前n项和是Sn,公差d不等于零,若a2,a3,a6成等比数列,则( )
A.a1d>0B.S2=0
C.dS3>0D.a1a2>0
[解析]由a2,a3,a6成等比数列,可得a=a2a6,
可得(a1+2d)2=(a1+d)(a1+5d),
即2a1d+d2=0,∵公差d不等于零,
∴a1d<0,S2=2a1+d=0,a1a2=-<0.
∴dS3=d(3a1+3d)=d2>0.
[答案]BC