1.已知sin α-cosα=,α∈(0,π),则sin 2α=( )
A.-1 B.-
C. D.1
解析:选A ∵(sin α-cosα)2=2,
∴2sin αcosα=-1,即sin 2α=-1.故选A.
2.已知α为锐角,且满足cos2α=sin α,则α等于( )
A.30°或60° B.45°
C.60° D.30°
解析:选D 因为cos2α=1-2sin2α,故由题意,知2sin2α+sin α-1=0,即(sin α+1)(2sin α-1)=0.因为α为锐角,所以sin α=,所以α=30°.故选D.
3.化简·cos28°的结果为( )
A. B.sin 28°
C.2sin 28° D.sin 14°cos28°