1.辗转相除法与更相减损术
(1)辗转相除法
①辗转相除法,又叫欧几里得算法,是一种求两个正整数的最大公约数的古老而有效的算法.
②辗转相除法的算法步骤
第一步,给定两个正整数m,n.
第二步,计算m除以n所得的余数r.
第三步,m=n,n=r.
第四步,若r=0,则m,n的最大公约数等于m;否则,返回第二步.
(2)更相减损术的算法步骤
第一步,任意给定两个正整数,判断它们是否都是偶数.若是,用2约简;若不是,执行第二步.
第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数.继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.
(3)辗转相除法和更相减损术的区别与联系