习题课4 圆周运动规律及其应用
【学习素养·明目标】 1.深刻理解向心力公式并能应用.2.掌握处理圆周运动综合问题的步骤和方法.
|
圆周运动中的动力学分析
|
1.向心力的来源
向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.
2.向心力的确定
(1)确定圆周运动的轨道所在的平面,确定圆心的位置.
(2)分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力,就是向心力.
3.向心力的公式
F=ma=m=mω2r=mr=mr4π2f2.
【例1】 (多选)如图所示,一根细线下端拴一个金属小球P,细线的上端固定在金属块Q上,Q放在带小孔的水平桌面上.小球在某一水平面内做匀速圆周运动(圆锥摆).现使小球改到一个更高一些的水平面上做匀速圆周运动(图上未画出),两次金属块Q都保持在桌面上静止.则后一种情况与原来相比较,下列说法中正确的是( )
A.Q受到桌面的支持力变大
B.Q受到桌面的静摩擦力变大
C.小球P运动的角速度变大
D.小球P运动的周期变大
BC [根据小球做圆周运动的特点,设细线与竖直方向的夹角为θ,故FT=,对金属块受力分析,由平衡条件,Ff=FTsin θ=mgtan θ,FN=FTcos θ+Mg=mg+Mg,故在θ增大时,Q受到的支持力不变,静摩擦力变大,A选项错误,B选项正确;设细线的长度为L,由mgtan θ=mω2Lsin θ,得ω=,故角速度变大,周期变小,故C选项正确,D选项错误.]
解决圆周运动问题的主要步骤
(1)审清题意,确定研究对象;明确物体做圆周运动的平面是至关重要的一环.
(2)分析物体的运动情况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等.
(3)分析物体的受力情况,画出受力分析图,确定向心力的来源.
(4)根据牛顿运动定律及向心力公式列方程.
1.如图所示,滑块M能在水平光滑杆上自由滑动,滑杆固定在转盘上,M用绳跨过在圆心处的光滑滑轮与另一质量为m的物体相连.当转盘以角速度ω转动时,M离轴距离为r,且恰能保持稳定转动.当转盘转速增到原来的2倍,调整r使之达到新的稳定转动状态,则滑块M( )
A.所受向心力变为原来的4倍
B.线速度变为原来的
C.转动半径r变为原来的
D.角速度变为原来的