求函数定义域的类型与方法
(1)已给出函数解析式:函数的定义域是使解析式有意义的自变量的取值集合.
(2)实际问题:求函数的定义域既要考虑解析式有意义,还应考虑使实际问题有意义.
(3)复合函数问题:
①若f(x)的定义域为[a,b],f(g(x))的定义域应由a≤g(x)≤b解出;
②若f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在[a,b]上的值域.
[注意] (1)f(x)中的x与f(g(x))中的g(x)地位相同.
(2)定义域所指永远是自变量的范围.
1.设函数f(x)的定义域为[1,5],则函数f(2x-3)的定义域为( )
A.[2,4] B.[3,11]
C.[3,7] D.[1,5]
解析:选A.由题意得,1≤2x-3≤5,解得2≤x≤4,所以函数f(2x-3)的定义域是[2,4].
2.设函数f(x)=-2x2+4x在区间[m,n]上的值域是[-6,2],则m+n的取值范围是________.
解析:由题意可得:函数f(x)=-2x2+4x的对称轴为直线x=1,故当x=1时,函数取得最大值为2.因为函数的值域是[-6,2],令-2x2+4x=-6,可得x=-1或x=3.所以-1≤m≤1,1≤n≤3,所以0≤m+n≤4.即m+n的取值范围为[0,4].
答案:[0,4]
函数的解析式
(1)已知f(x+1)=x2-5x+4,则f(x)=________.
(2)已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-2x+3.
①求出函数f(x)在R上的解析式;
②写出函数的单调区间(写出即可,不需要证明).
【解】 (1)令x+1=t,