1.等式的性质
性质:(1):等式的两边同时加上(或减去)同一个数(或代数式),等式仍成立.
用字母表示为:如果a=b,则对任意的c,都有a±c=b±c.
性质(2):等式的两边同时乘以(或除以)同一个数(或代数式)(除数或代数式不为0),等式仍成立.
用字母表示为:如果a=b,则对任意的c,都有a×c=b×c,a÷c=b÷c(c≠0).
2.恒等式
(1)一般地,含有字母的等式,如果其中的字母取任意实数时等式都成立,则称其为恒等式,也称等式两边恒等.恒等式是进行代数变形的依据之一.
(2)一个经常会用到的恒等式:对任意的x,a,b,都有(x+a)(x+b)=x2+(a+b)x+ab.
(3)用“十字相乘法”分解因式:①直接利用公式x2+(a+b)x+ab=(x+a)(x+b)进行分解;
②利用公式acx2+(ad+bc)x+bd=(ax+b)(cx+d)进行分解.
3.方程的解(或根)是指能使方程左右两边相等的未知数的值.求方程解的过程叫做解方程.把一个方程所有解组成的集合称为这个方程的解集.
1.下列运用等式性质进行的变形,正确的是( )
A.如果a=b,那么a+c=b-c
B.如果a2=3a,那么a=3