【例1】 已知全集U={0,1,2,3,4,5,6},集合A={x∈N|1<x≤4},B={x∈R|x2-3x+2=0}.
(1)用列举法表示集合A与B;
(2)求A∩B及?U(A∪B).
[解] (1)由题知,A={2,3,4},B={x∈R|(x-1)(x-2)=0}={1,2}.
(2)由题知,A∩B={2},A∪B={1,2,3,4},所以?U(A∪B)={0,5,6}.
集合的运算主要包括交集、并集和补集运算.这也是高考对集合部分的主要考查点.有些题目比较简单,直接根据集合运算的定义可得.有些题目与解不等式或方程相结合,需要先正确求解不等式,再进行集合运算.还有的集合问题比较抽象,解题时需借助Venn图进行数形分析或利用数轴等,采用数形结合思想方法,可使问题直观化、形象化,进而能使问题简捷、准确地获解.
1.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则?U(A∪B)=( )
A.{1,3,4} B.{3,4}
C.{3} D.{4}
D [∵A={1,2},B={2,3},∴A∪B={1,2,3},
∴?U(A∪B)={4}.]