【例1】 复数z=log3(x2-3x-3)+ilog2(x-3),当x为何实数时,
(1)z∈R;(2)z为虚数.
[解] (1)因为一个复数是实数的充要条件是虚部为0,
所以
由②得x=4,经验证满足①③式.
所以当x=4时,z∈R.
(2)因为一个复数是虚数的充要条件是虚部不为0,
所以
由①得x>或x<.
由②得x≠4,由③得x>3.
所以当x>且x≠4时,z为虚数.
处理复数概念问题的两个注意点
(1)当复数不是a+bi(a,b∈R)的形式时,要通过变形化为a+bi的形式,以便确定其实部和虚部.
(2)求解时,要注意实部和虚部本身对变量的要求,否则容易产生增根.