【例1】 已知曲线y=x3+.
(1)求曲线在点P(2,4)处的切线方程;
(2)求曲线过点P(2,4)的切线方程;
(3)求斜率为4的曲线的切线方程.
[解] (1)∵P(2,4)在曲线y=x3+上,且y′=x2,
∴在点P(2,4)处的切线的斜率k=y′|x=2=4.
∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.
(2)设曲线y=x3+与过点P(2,4)的切线相切于点A,则切线的斜率k=y′|x=x0=x.
∴切线方程为y-=x(x-x0),
即y=x·x-x+.
∵点P(2,4)在切线上,