【例1】 在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.
[解] 设“第1次抽到理科题”为事件A,“第2次抽到理科题”为事件B,则“第1次和第2次都抽到理科题”为事件AB.
(1)从5道题中不放回地依次抽取2道题的事件数为
n(Ω)=A=20.
根据分步乘法计数原理,n(A)=A×A=12.
于是P(A)===.
(2)因为n(AB)=A=6,
所以P(AB)===.
(3)法一:由(1)(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概率
P(B|A)===.
法二:因为n(AB)=6,n(A)=12,
所以P(B|A)===.