学习目标:1.能够结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步感受数形结合的基本思想.(重点) .掌握求曲线方程的一般方法,进一步体会曲线与方程的关系,感受解析几何的思想方法.(难点)
1.方程与曲线的定义
一般地,在平面直角坐标系中,如果某曲线C(看作满足某种条件的点的集合或轨迹)上的点与一个二元方程的实数解建立了如下的关系:
(1)曲线上点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都在曲线上,那么,这条曲线叫作方程的曲线,这个方程叫作曲线的方程.
只有同时具备了上述两个性质,才能称为“方程的曲线”和“曲线的方程”.
思考:曲线C上的点的坐标都是方程f(x,y)=0的解,能否说f(x,y)=0是曲线C的方程?试举例说明.
[提示] 不能.还要验证以方程f(x,y)=0的解为坐标的点是否都在曲线上.例如曲线C为“以原点为圆心,以2为半径的圆的上半部分”与“方程x2+y2=4”,曲线上的点都满足方程,但曲线的方程不是x2+y2=4.
2.方程与曲线的关系