题组1 分组转化求和
1.已知数列的通项公式为an=2n+n,前n项和为Sn,则S6等于( )
A.282 B.147 C.45 D.70
解析:选B ∵an=2n+n,
∴Sn=a1+a2+a3+…+an
=(21+22+23+…+2n)+(1+2+3+…+n)
=+
=2n+1-2+,
∴S6=27-2+=147.
2.已知数列:1,2,3,…,试求的前n项和.
解:令的前n项和为Sn,则Sn=1+2+3+…+=(1+2+3+…+n)+=+=+1-.
即数列的前n项和Sn=+1-.
题组2 错位相减法求和
3.数列的前n项和( )
A.n·2n-2n+2 B.n·2n+1-2n+1+2
C.n·2n+1-2n D.n·2n+1-2n+1
解析:选B ∴Sn=1×2+2×22+3×23+…+n×2n,①
2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1. ②