课时作业18 机械能守恒定律及其应用
时间:45分钟
1.在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小( A )
A.一样大 B.水平抛的最大
C.斜向上抛的最大 D.斜向下抛的最大
解析:由机械能守恒定律mgh+mv=mv知,落地时速度v2的大小相等,故A正确.
2.取水平地面为重力势能零点.一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等.不计空气阻力.该物块落地时的速度方向与水平方向的夹角为( B )
A. B.
C. D.
解析:设物块水平抛出的初速度为v0,高度为h,由题意知mv=mgh,即v0=.物块在竖直方向上的运动是自由落体运动,落地时的竖直分速度vy==vx=v0,则该物块落地时的速度方向与水平方向的夹角θ=,故选项B正确,选项A、C、D错误.
3.如图所示,一质量为m的小球固定于轻质弹簧的一端,弹簧的另一端固定于O点处,将小球拉至A处,弹簧恰好无形变,由静止释放小球,它运动到O点正下方B点时速度为v,A、B两点间的竖直高度差为h,则( D )
A.由A到B重力做的功小于mgh
B.由A到B重力势能减少mv2
C.由A到B小球克服弹力做功为mgh
D.小球到达位置B时弹簧的弹性势能为mgh-
解析:重力做功只与初末位置的高度差有关,则小球由A至B重力做功为mgh,所以A错误;小球由A至B重力做功为mgh,则重力势能减少mgh,小球在下降过程中重力势能转化为小球动能和弹簧弹性势能,所以mgh>mv2,故B错误;根据动能定理得mgh+W弹=mv2,所以由A到B小球克服弹力做功为mgh-mv2,故C错误;弹簧弹力做的功等于弹性势能的变化,所以小球到达B位置时弹簧的弹性势能为mgh-mv2,故D正确.
4.如图所示,把小车放在倾角为30°的光滑斜面上,用轻绳跨过定滑轮使之与盛有沙子的小桶相连,不计滑轮质量及摩擦,已知小车的质量为3m,小桶与沙子的总质量为m,小车从静止释放后,在小桶上升竖直高度为h的过程中( B )
A.小桶处于失重状态
B.小桶的最大速度为
C.小车受绳的拉力等于mg
D.小车的最大动能为mgh
解析:小桶能够由静止上升是由于小车对它的拉力大于它自身的重力,小桶加速度向上,则小桶处于超重状态,选项A错误;由于整个系统均在加速,当小桶上升至h高度时速度最大,对系统由机械能守恒定律得3mghsin30°-mgh=·4mv,解得vm=,选项B正确;由于小桶处于超重状态,绳对小桶的拉力与绳对小车的拉力为相互作用力,大小相等,即FT=mg+ma,选项C错误;速度最大时的动能也最大,即Ekm=·3mv=mgh,选项D错误.