课后限时集训(十六)功能关系 能量守恒定律
(建议用时:40分钟)
[基础对点练]
题组一:功能关系的理解及应用
1.(多选)(2019·海口调研)某运动员参加百米赛跑,他采用蹲踞式起跑,在发令枪响后,左脚迅速蹬离起跑器,在向前加速的同时提升身体重心。如图所示,假设质量为m的运动员,在起跑时前进的距离s内,重心升高量为h,获得的速度为v,阻力做功为Wf,则在此过程中( )
A.运动员的机械能增加了mv2
B.运动员的机械能增加了mv2+mgh
C.运动员的重力做功为mgh
D.运动员自身做功W=mv2+mgh-Wf
BD [运动员的重心升高h,获得的速度为v,其机械能的增量为ΔE=mgh+mv2,选项A错误,B正确;运动员的重心升高h,重力做负功,WG=-mgh,选项C错误;根据动能定理得,W+Wf-mgh=mv2-0,解得W=mv2+mgh-Wf,选项D正确。]
2.(2016·四川高考)韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员。他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J,他克服阻力做功100 J。韩晓鹏在此过程中( )
A.动能增加了1 900 J
B.动能增加了2 000 J
C.重力势能减小了1 900 J
D.重力势能减小了2 000 J
C [根据动能定理得韩晓鹏动能的变化ΔE=WG+Wf=1 900 J-100 J=1 800 J>0,故其动能增加了1 800 J,选项A、B错误;根据重力做功与重力势能变化的关系WG=-ΔEp,所以ΔEp=-WG=-1 900 J<0,故韩晓鹏的重力势能减小了1 900 J,选项C正确,选项D错误。]
3.一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时,上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )
A.tan θ和 B.tan θ和
C.tan θ和 D.tan θ和
D [由动能定理有-mgH-μmgcos θ=0-mv2,-mgh-μmgcos θ=0-m2,解得μ=tan θ,h=,D正确。]
4.(多选)把质量是0.2 kg的小球放在竖立的弹簧上,并把球往下按至A的位置,如图甲所示。迅速松手后,弹簧把球弹起,球升至最高位置C(图丙)。途中经过位置B时弹簧正好处于自由状态(图乙)。已知B、A的高度差为0.1 m,C、B的高度差为0.2 m,弹簧的质量和空气阻力都可以忽略,重力加速度g取10 m/s2。则下列说法正确的是( )
A.小球从A上升至B的过程中,弹簧的弹性势能一直减小,小球的动能一直增加
B.小球从B上升到C的过程中,小球的动能一直减小,势能一直增加
C.小球在位置A时,弹簧的弹性势能为0.6 J
D.小球从位置A上升至C的过程中,小球的最大动能为0.4 J
BC [小球从A上升到B的过程中,弹簧的形变量越来越小,弹簧的弹性势能一直减小,小球在A、B之间某处的合力为零,速度最大,对应动能最大,选项A错误;小球从B上升到C的过程中,只有重力做功,机械能守恒,动能减少,势能增加,选项B正确;根据机械能守恒定律,小球在位置A时,弹簧的弹性势能为Ep=mghAC=0.2×10×0.3 J=0.6 J,选项C正确;小球在A、B之间某处受力平衡时,动能最大,小球在B点时的动能为Ek=mghBC=0.4 J<Ekm,选项D错误。]