专题强化 动力学连接体问题和临界问题
[学科素养与目标要求]
科学思维:1.会用整体法和隔离法分析动力学的连接体问题.2.掌握动力学临界问题的分析方法,会分析几种典型临界问题的临界条件.
一、动力学的连接体问题
1.连接体:两个或两个以上相互作用的物体组成的具有相同加速度的整体叫连接体.如几个物体叠放在一起,或并排挤放在一起,或用绳子、细杆等连在一起,在求解连接体问题时常用的方法为整体法与隔离法.
2.整体法:把整个连接体系统看做一个研究对象,分析整体所受的外力,运用牛顿第二定律列方程求解.其优点在于它不涉及系统内各物体之间的相互作用力.
3.隔离法:把系统中某一物体(或一部分)隔离出来作为一个单独的研究对象,进行受力分析,列方程求解.其优点在于将系统内物体间相互作用的内力转化为研究对象所受的外力,容易看清单个物体(或一部分)的受力情况或单个过程的运动情形.
4.整体法与隔离法的选用
求解各部分加速度都相同的连接体问题时,要优先考虑整体法;如果还需要求物体之间的作用力,再用隔离法.求解连接体问题时,随着研究对象的转移,往往两种方法交替运用.一般的思路是先用其中一种方法求加速度,再用另一种方法求物体间的作用力或系统所受合力.无论运用整体法还是隔离法,解题的关键还是在于对研究对象进行正确的受力分析.
例1 如图1所示,物体A、B用不可伸长的轻绳连接,在竖直向上的恒力F作用下一起向上做匀加速运动,已知mA=10kg,mB=20kg,F=600N,求此时轻绳对物体B的拉力大小(g取10m/s2).
图1
答案 400N
解析 对A、B整体受力分析和单独对B受力分析,分别如图甲、乙所示:
对A、B整体,根据牛顿第二定律有:
F-(mA+mB)g=(mA+mB)a
物体B受轻绳的拉力和重力,根据牛顿第二定律,有:
FT-mBg=mBa,
联立解得:FT=400N.
针对训练1 (多选)如图2所示,质量分别为mA、mB的A、B两物块用轻绳连接放在倾角为θ的固定斜面上,用平行于斜面向上的恒力F拉A,使它们沿斜面匀加速上升,A、B与斜面间的动摩擦因数均为μ,为了增大轻绳上的张力,可行的办法是( )
图2
A.减小A物块的质量
B.增大B物块的质量
C.增大倾角θ
D.增大动摩擦因数μ
答案 AB
解析 当用沿斜面向上的恒力拉A,两物块沿斜面向上匀加速运动时,对整体运用牛顿第二定律,
有F-(mA+mB)gsinθ-μ(mA+mB)gcosθ=(mA+mB)a,
得a=-gsinθ-μgcosθ.
隔离B研究,根据牛顿第二定律有FT-mBgsinθ-μmBgcosθ=mBa,
则FT=mBgsinθ+μmBgcosθ+mBa=,
要增大FT,可减小A物块的质量或增大B物块的质量,故A、B正确.