基础知识整合
1.导数与函数的极值
(1)函数的极小值与极小值点
若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,且f′(a)=0,而且在x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数的极小值点,f(a)叫做函数的极小值;
(2)函数的极大值与极大值点
若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,且f′(b)=0,而且在x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数的极大值点,f(b)叫做函数的极大值.
2.导数与函数的最值
(1)函数f(x)在[a,b]上有最值的条件
如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.
(2)求y=f(x)在[a,b]上的最大(小)值的步骤
①求函数y=f(x)在(a,b)内的极值.
②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
1.对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.
2.若函数f(x)在开区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.
3.极值有可能是最值,但最值只要不在区间端点处取得,其必定是极值.
1.函数f(x)=x3-6x2+8x的极值点是( )
A.x=1 B.x=-2
C.x=-2和x=1 D.x=1和x=2
答案 D
解析 f′(x)=4x2-12x+8=4(x-2)(x-1),则结合列表可得函数f(x)的极值点为x