1.y2=ax(a≠0)的焦点坐标为,准线方程为x=-.
2.设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则
(1)x1x2=,y1y2=-p2.
(2)弦长|AB|=x1+x2+p=(α为弦AB的倾斜角).
(3)以弦AB为直径的圆与准线相切.
(4)通径:过焦点垂直于对称轴的弦,长度等于2p,通径是过焦点最短的弦.
[基础自测]
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线. ( )
(2)若直线与抛物线只有一个交点,则直线与抛物线一定相切. ( )
(3)若一抛物线过点P(-2,3),则其标准方程可写为y2=2px(p>0).( )
(4)抛物线既是中心对称图形,又是轴对称图形. ( )
[答案] (1)× (2)× (3)× (4)×
2.抛物线y=x2的准线方程是( )
A.y=-1 B.y=-2