一、考纲要求
1.掌握平面的基本性质,空间两条直线、直线和平面、两个平面的位置关系(特别是平行和垂直关系)以及它们所成的角与距离的概念.
2.对于异面直线的距离,只要求会计算已给出公垂线时的距离.
3.能运用上述概念以及有关两条直线、直线和平面、两个平面的平行和垂直关系的性质与判定,进行论证和解决有关问题.
4.会用斜二侧的画法画水平放置的平面图形(特别是正三角形、正四边形、正五边形、两个平面、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系.
5.理解用反证法证明命题的思路,会用反证法证明一些简单的问题.
二、知识结构
1.空间多边形不在同一平面内的若干线段首尾相接所成的图形叫做空间折线.
若空间折线的最后一条线段的尾端与最初一条线段的首端重合,则叫做封闭的空间折线.
若封闭的空间折线各线段彼此不相交,则叫做这空间多边形平面,平面是一个不定义的概念,几何里的平面是无限伸展的.
平面通常用一个平行四边形来表示.
平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.