教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.
教学重点:能用数学归纳法证明一些简单的数学命题.
教学难点:数学归纳法中递推思想的理解.
教学过程:
一、复习准备:
1. 分析:多米诺骨牌游戏. 成功的两个条件:(1)第一张牌被推倒;(2)骨牌的排列,保证前一张牌倒则后一张牌也必定倒.
回顾:数学归纳法两大步:(i)归纳奠基:证明当n取第一个值n0时命题成立;(ii)归纳递推:假设n=k(k≥n0, k∈N*)时命题成立,证明当n=k+1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.
2. 练习:已知 ,猜想的表达式,并给出证明?
过程:试值 ,,…,→ 猜想 → 用数学归纳法证明.
3. 练习:是否存在常数a、b、c使得等式对一切自然数n都成立,试证明你的结论.