一、选择题
1.方程x3-6x2+9x-10=0的实根个数是( )
A.3 B.2 C.1 D.0
解析 设f(x)=x3-6x2+9x-10,f′(x)=3x2-12x+9=3(x-1)(x-3),由此可知函数的极大值为f(1)=-6<0,极小值为f(3)=-10<0,所以方程x3-6x2+9x-10=0的实根个数为1.
答案 C
2.若存在正数x使2x(x-a)<1成立,则实数a的取值范围是( )
A.(-∞,+∞) B.(-2,+∞)
C.(0,+∞) D.(-1,+∞)
解析 ∵2x(x-a)<1,∴a>x-.