专题探究
专题一 复数的概念及几何意义
复数的概念是复数的基本内容,是解决复数问题的基础.在解决与复数概念相关的问题时,复数问题实数化是求解的基本策略,“桥梁”是设z=x+yi(x,y∈R),依据是“两个复数相等的充要条件”.此外,这类问题还常以方程的形式出现,与方程的根有关,这时将已知根代入(或设出后代入),利用复数相等的充要条件再进行求解.
复数的几何意义实质是复数与复平面上的点以及从原点出发的向量建立了一一对应关系,因此还常常利用数形结合的思想来解决复数问题.
【例1】设复数z=(1+i)m2-(2+4i)m-3+3i.试求当实数m取何值时:
(1)z是实数;(2)z是纯虚数;(3)z对应的点在直线x+y=0上;(4)|z|=0;(5)=-3+i.
解:z=(1+i)m2-(2+4i)m-3+3i=(m2-2m-3)+(m2-4m+3)i.