第2讲 椭圆、双曲线、抛物线
1.(2015·福建改编)若双曲线E:-=1的左,右焦点分别为F1,F2,点P在双曲线E上,且PF1=3,则PF2等于________.
2.(2014·课标全国Ⅰ改编)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则QF等于________.
3.(2015·江苏)在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为________.
4.(2014·安徽)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左,右焦点,过点F1的直线交椭圆E于A,B两点.若AF1=3F1B,AF2⊥x轴,则椭圆E的方程为________.
1.以填空题形式考查圆锥曲线的方程、几何性质(特别是离心率).2.以解答题形式考查直线与圆锥曲线的位置关系(弦长、中点等).