用户名: 密码:  用户登录   新用户注册  忘记密码  账号激活
您的位置:教学资源网 >  教研天地  >  专业研究 >  阅读文章

数学基础教育中的“双基”如何发展为“四基”

阅读:3230 次  我要评论(0)  收藏  2012/9/15 10:59:48
  使学生获得数学的基本活动经验,也确实应该作为数学课程的一个重要目标.数学教学,本质上是师生共同进行数学活动的教学,所以学生获得相关的活动经验当然应该是数学课程的一个目标.特别是,其中有些精神“只能意会,难以言传”,必须要学生自己在亲身经历的过程中获得经验;有些内容虽能言传,但是如果没有学生在数学活动中亲身体会,理解也难以深刻.但是,《课标》并没有展开阐述“数学的基本活动经验”有哪些内涵和外延,这也给研究者留下了讨论的空间.在这里也谈谈自己不成熟的观点,与同行交流.
  什么是数学活动经验?“活动经验”与“活动”密不可分,所说的“活动”,当然要有“动”,手动、口动和脑动.它们既包括学生在课堂上学习数学时的探究性学习活动,也包括与数学课程相联系的学生实践活动;既包括生活、生产中实际进行的数学活动,也包括数学课程教学中特意设计的活动.“活动”是一个过程,因此也体现出,不但学习结果是课程目标,而且学习过程也是课程目标.
  其次,“活动经验”还与“经验”密不可分,当然就与“人”密不可分.学生本人要把在活动中的经历、体会总结上升为“经验”.这既可以是活动当时的经验,也可以是延时反思的经验;既可以是学生自己摸索出的经验,也可以是受别人启发得出的经验;既可以是从一次活动中得到的经验,也可以是从多次活动中互相比较得到的经验.特别关键的是,这些“经验”必须转化和建构为属于学生本人的东西,才可以认为学生获得了“活动经验”.应该注意的是,所说的“活动”都必须有明确的数学内涵和数学目的,体现数学的本质,才能称得上是“数学活动”,它们是数学教学的有机组成部分.教师的课堂讲授、学生的课堂学习,是最主要的“数学活动”,这种讲授和学习,应该是渐进式的、启发
  式的、探究式的、互动式的.此外,还有其他形式的“数学活动”,例如学生的自主学习,调查研究,独立思考,合作交流,小组讨论,探讨分析、参观实践,以及作业练习和操作计算工具,等等.
  还应该强调的是,学生在进行“数学活动”的过程中,除了能够获得逻辑推理的经验,还能够获得合情推理的经验.例如,根据条件“预测结果”的经验和根据结果“探究成因”的经验.这两种经验对于培养创新人才也是非常重要的.
  数学活动的教育意义在于,学生主体通过亲身经历数学活动过程,能够获得具有个性特征的感性认识、情感体验、以及数学意识、数学能力和数学素养.
  让学生获得“数学活动经验”,还能够培养学生在活动中从数学的角度思考问题,直观地、合情地获得一些结果,这些是数学创造的根本,是得到新结果的主要途径.数学活动经验并不仅仅是实践的经验,也不仅仅是解题的经验,更加重要的是思维的经验,是在数学活动中思考的经验.因为,创新依赖的是思考,是数学活动中创造性的思维.而思维方法是依靠长期活动经验积累获得的,思维品质是依靠有效的、多方面的数学活动改善的,并不是仅仅依靠接受教师的传授获得的.爱因斯坦说:“独立思考是创新的基础.”获得数学活动经验,最重要的是积累“发现问题、提出问题”的经验,以及“分析问题、解决问题”的经验,总之,是“从头”想问题、思考问题、做问题全过程的经验.
  学生形成智慧,不可能仅依靠掌握丰富的知识,一定还需要经历实践及在实践中取得经验.数学思想也不仅在探索推演中形成,还需要在数学活动经验积累的基础上形成.
  数学的基本活动经验可以按不同的标准分成若干类型.比如,有的学者把它分为如下4种:直接的活动经验,间接的活动经验,设计的活动经验和思考的活动经验.直接的活动经验是与学生日常生活直接联系的数学活动中所获得的经验,如购买物品、校园设计等.间接的活动经验是学生在教师创设的情景、构建的模型中所获得的数学经验,如鸡兔同笼、顺水行舟等.设计的活动经验是学生从教师特意设计的数学活动中所获得的经验,如随机摸球、地面拼图等.思考的活动经验是通过分析、归纳等思考获得的数学经验,如预测结果、探究成因等.学生只有积极参与数学课程的教学过程,经过独立思考,经过探索实践,经过合作交流,才有可能积累数学活动经验.
  《课标》中还专门设计了“综合与实践”的课程内容,强调以问题为载体,让学生在综合运用知识、技能解决问题的实践中获得数学活动经验.在学生获得数学的基本活动经验的过稃中,就必然有情感态度与价值观的提升.这样,“四基”就全面体现了《纲要》中“三维目标”的要求.
  4“四基”是一个有机的整体
  “四基”虽然是由4个部分构成的,但“四基”不应仅仅看作是4个事物简单的叠加或混合,而应是一个有机的整体,是互相联系、互相促进的.
  基础知识和基本技能是数学教学的主要载体,需要花费较多的课堂时间;数学思想则是数学教学的精髓,是统领课堂教学的制高点;数学活动是不可或缺的教学形式与过程.“四基”既然比原来增加了两条,教师在课堂教学的安排上就应该有意识地给数学思想的教学预留适当的时间;但是数学思想的教学不能空洞地进行,一定要以数学知识为载体进行,并且应该注意将数学知识与数学思想融为一体,因势利导,水到渠成,画龙点睛;教师在讲解数学思想时,应该避免“两层皮”,避免生硬牵强,避免长篇大论.在课堂数学活动的时间安排上,大量的应该是教师启发式传授和学生在教师指导下独立思考、自主探究的时间;其他形式的数学活动也应安排适当的时间.
  此外,“四基”既然比原来增加了两条,那么,在教学评价上也应该给数学思想和数学活动以适当的位置和空间.
  《课标》在“四基”的表述前用了“获得适应社会生活和进一步发展所必需的”这样一个限制性定语,这一方面避免了在“四基”的名义下不适当地扩大教学内容,一方面也强调了学生获得数学“四基”的现实意义和长远意义.其现实意义是一一学生适应社会生活所必需:其长远意义是一一学生进一步发展所必需.如果数学课程能够使学生获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验,那么培养全面发展的创新性人才就具备了很好的条件.
  【参考文献】
  【l】中华人民共和国教育部.义务教育阶段数学课程标准(2011年版)【M】.北京:北京师范大学出版社,2012·
  [2]中华人民共和国教育部.九年义务教育全日制初级中学数学教学大纲(试验修订版)【M】.北京:人民教育出版社,2000.
  [3】张奠宙,竺士芬,林永伟.“基本数学经验”的界定与分类[J].数学通报,2008,(5):4—7·
  【4】史宁中.数学思想概论(第1辑一第4辑)【M】.长春:东北师范大学出版社,2008—2010.
  摘自《数学教育学报》2012第1期
12
     来源:网络  编辑:xueshan  返回顶部  关闭页面  
  • 暂时没有相关评论